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ABSTRACT
Purpose With the goal of quantifying P-gp transport kinetics, Part
1 of these manuscripts evaluates different compartmental models
and Part 2 applies these models to kinetic data.
Methods Models were developed to simulate the effect of apical
efflux transporters on intracellular concentrations of six drugs. The effect
of experimental variability onmodel predictions was evaluated. Several
models were evaluated, and characteristics including membrane con-
figuration, lipid content, and apical surface area (asa) were varied.
Results Passive permeabilities fromMDCK-MDR1 cells in the pres-
ence of cyclosporine gave lower model errors than from MDCK
control cells. Consistent with the results in Part 2, model configuration
had little impact on calculated model errors. The 5-compartment
model was the simplest model that reproduced experimental lag
times. Lipid content and asa had minimal effect on model errors,
predicted lag times, and intracellular concentrations. Including endog-
enous basolateral uptake activity can decrease model errors. Models
with andwithout explicit membrane barriers differedmarkedly in their
predicted intracellular concentrations for basolateral drug exposure.
Single point data resulted in clearances similar to time course data.
Conclusions Compartmental models are useful to evaluate the
impact of efflux transporters on intracellular concentrations. Whereas
a 3-compartment model may be sufficient to predict the impact of
transporters that efflux drugs from the cell, a 5-compartment model
with explicit membranes may be required to predict intracellular
concentrations when efflux occurs from the membrane. More com-
plex models including additional compartments may be unnecessary.
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ABBREVIATIONS
3C, 5C, 6C, 7C, 9C 3-, 5-, 6-, 7-, and 9-compartmental

models respectively
6Phys, 7Phys, 9Phys 6-, 7-, and 9-comparment models with

physiologic volumes of plasma
membranes

A→B Apical to basolateral transport
ABCB1 ATP-binding cassette transporter B1
asa Apical-to-basolateral surface area ratio
B→A Basolateral to apical transport
Ccell,AB ratio The ratio on predicted intracellular

concentration in the A→B direction
without efflux transport to with efflux
transport

Ccell,BA ratio The ratio on predicted intracellular
concentration in the B→A direction
without efflux transport to with efflux
transport

CLae Active apical efflux clearance
CLbu Active basolateral uptake clearance
CLcib Clearance through a compound

independent barrier
CLd Passive diffusion clearance
CLi Diffusion clearance into an explicit

membrane compartment
CLo Diffusion clearance out of an explicit

membrane compartment
CsA Cyclosporine A
ER Efflux ratio
Kp Partition constant for the drug partitioning

into microsomal membranes
(Kp=CLi/CLo)

MDCK Madin-Darby canine kidney cells
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MDCK-MDR1 MDCK cells stably transfected with
human MDR1

MDR1 Multidrug resistance protein 1 gene
Papp Apparent permeability
P-gp P-glycoprotein
tlag Permeability lag time

INTRODUCTION

There is increasing recognition that free intracellular concen-
trations may be different from the free plasma concentrations
when drugs are transporter substrates (1,2). Accurate estima-
tion of unbound intracellular concentrations is necessary when
predicting activities for intracellular processes including absorp-
tion, distribution, metabolism, and excretion (ADME), and
pharmacological and toxicological targets (3). Ultimately, the
relationship between unbound intracellular concentration and
unbound plasma concentration (Kpu,u), must be determined
in order to relate these activities to plasma drug levels (2,4–6).
Regulatory guidances now include evaluation of transporter
mediated drug-drug interactions (DDIs) from the perspective of
both victim and perpetrator (7,8). Characterization of trans-
porter activity and quantification of transporter kinetics are
active areas of research, but standardization of experimental
techniques and data interpretation continues to be challenging.

There are two kinds of experiments that are routinely
conducted to characterize efflux transporter mediated process-
es. First, permeability is measured across cell monolayers in the
A→B and B→A directions. These relatively straightforward
experiments provide permeability and efflux estimates with
sparse, often single point, data. Second, saturation experiments
are conducted to determine kinetic parameters such as Km or
Ki. These experiments require substantially larger datasets. In
a previous report, we utilized single point data to develop and
compare 3- and 5-compartmental (3C and 5C) models that
estimate passive and efflux clearances, and predict intracellular
concentration (9). In Part 1, we develop and evaluate addition-
al models for bidirectional permeability by increasing model
complexity. In Part 2, we apply thesemodels to saturation data
in order to predict kinetic parameters.

Free intracellular concentrations are difficult to determine
experimentally, and modeling techniques may provide a means
to estimate this important parameter (2). A number of modeling
efforts have been used to describe combinations of permeability,
transport, and metabolism, and these models inherently include
predictions of intracellular concentrations (10). Compartmental
approaches are commonly utilized to model uptake (5,11) and
efflux transport (12,13), metabolism (11,14), and combinations of
these processes. For example, Kalvass et al. use a three-
compartment model with different efflux ratios to simulate pas-
sive permeability and transport (12). Bentz and coworkers solve

for micro rate constants with multi-time-point permeability data
(13). Menochet et al. utilize concentration-time profiles of parent
and metabolites to simulate the combination of uptake and
metabolism in hepatocytes (11). Differentmodels require datasets
of varying complexity depending on the number of parameters
being estimated. The overall goal of this research is to develop
models based on readily available in vitro data to predict intracel-
lular concentrations in the presence of transporters.

P-glycoprotein (P-gp, ABCB1; MDR1) is an apical efflux
transporter that appreciably affects the disposition of drugs.
Differences in relative P-gp tissue expression as well as the
orientation of the apical membrane determine the role of this
transporter in drug distribution. For example, P-gp in brain
endothelial cells effluxes drug from the apical membrane into
the blood. This is a significant part of the blood–brain barrier,
preventing many hydrophobic compounds from entering the
brain. In the liver, the apical membrane forms the bile cana-
liculi, and P-gp effluxes molecules from the apical membrane
into the bile. The orientation of the apical membrane relative
to the blood (site of drug exposure) can influence the impact of
P-gp on intracellular concentrations.

Increasing evidence suggests that P-gp effluxes drugs directly
out of the apical membrane (15,16). Compartmental models
that represent the cell as a single compartment can effectively
simulate efflux transport out of the cytosol and uptake across the
plasmamembrane.Modeling efflux out of amembrane requires
an explicit membrane compartment.We have previously shown
that a 5-compartment model with explicit membrane compart-
ments representing the apical and basolateral membranes can
reproduce the impact of P-gp in brain and liver concentrations
(9). In contrast to the 5-compartment model, the cellular envi-
ronment is highly complex. Intracellular distribution encom-
passes partitioning into membranes and organelles (for example
mitochondria and lysosomes), andmay be influenced by cellular
geometry and organization (for example membrane surface
areas and transporter densities). In the studies reported in Part
1, we evaluate a number of compartmental configurations more
complex than the 5-compartment model for their impact on
predicted intracellular concentrations and model error. Char-
acteristics evaluated include lipid content, the number, relative
size, and configuration of explicit membrane compartments,
and the apical-to-basolateral surface area ratio (asa). Models
were developed with permeability data from six drugs in
MDCK-MDR1 cells. The effects of experimental variability
and model complexity on predictions and errors are discussed.

MATERIALS AND METHODS

Chemicals and Reagents

Reference compounds were supplied by Sigma-Aldrich (St.
Louis, MO). Cell culture reagents were purchased from
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Invitrogen (Carlsbad, CA). Madin-Darby canine kidney cells
(MDCK) were obtained from American Type Culture Col-
lection (Manassas, VA). MDCK cells transfected with the
MDR1 gene (MDCK-MDR1) were obtained from NIH (Be-
thesda, MD). Transwells (12-well, 11-mm diameter, 0.4-μm
pores) were purchased from Corning Costar (Cambridge,
MA).

Microsomal Partitioning

Since the endoplasmic reticulum consists of unsorted mem-
brane lipids (17), human liver microsomes were used as a
model for membrane partitioning. Microsomal partitioning
data was generated by equilibrium dialysis in a 96-well equi-
librium dialyzer with a 5,000 MW cutoff as previously report-
ed (18). Following dialysis, samples from each side of the plate
was mixed with an equal amount of the opposite matrix and
frozen. For analysis, standard LCMSMS conditions on an
API4000 were used.

Cellular Transport Studies

MDCK-MDR1 cells were cultured and transport experiments
were conducted as described previously (9,19). All cells were
maintained in high glucose (4.5 g/L) DMEM supplemented
with 10% FBS, 1%NEAA, 1% l-glutamine, penicillin (100 U/
mL), streptomycin (100 g/mL) at 37°C in a humidified incu-
bator with 5%CO2. All cells were seeded at a density of 60,000
cells/cm2 onto collagen-coated, microporous, polycarbonate
membranes in 12-well Transwell® plates. Cells were used
between passages 10 and 14. The culture medium was
changed 24 h after seeding to remove cell debris and dead
cells; afterwards the medium was changed every other day for
6 days. The permeability assay buffer was Hanks’ balanced
salts solution containing 10mMhydroxyethylpiperazineethane
sulfonic acid (HEPES) and 15 mM glucose at pH 7.4 (HBSSg
buffer). The test compounds were prepared inHBSSg buffer to
a final concentration of 5 μM each.

Test compounds were dissolved in dimethyl sulfoxide
(DMSO) and then diluted inHanks’ balanced transport buffer
(pH 7.4) (Mediatech, Herndon, VA). The amount of DMSO
in the final transport solution was 1% (v/v). Experiments were
conducted with or without the P-gp inhibitor cyclosporine A
(CsA; 10 μM). The test compounds (5 μM final concentration)
were dosed on either the apical side (A→B transport) or the
basolateral side (B→A transport) and incubated in a humid-
ified atmosphere at 37°C with 5% CO2. For single point
experiments, samples were collected at the end of 90 min for
experiments in each direction. All experiments were
conducted in triplicate, and estimate means and standard
deviations calculated. A total of 6 compounds were evaluated
(Table S1). For permeability experiments, data is not accepted
if recovery is less than 80%. Multiple time points were

conducted to determine lag time. Conditions for the A→B
experiments were repeated with sampling at 15, 30, 45, 60, 75
and 90 min. Target drug concentrations were analyzed by
liquid chromatography-tandem mass spectrometry with pre-
viously described methods (9).

Modeling

The models were developed in a manner similar to that
reported previously (9). Model assumptions include first order
kinetics for all processes, equal passive clearances in the A→B
and B→A directions, and no loss of drug to degradation or
non-specific binding. Since back diffusion from the receiver
compartment is included, sink conditions and steady-state are
not assumed. Differential equations were developed as previ-
ously for the 3-, 4-, 5-, 6-, 7-, and 9-compartment models
shown in Fig. 1 and S1. Models with explicit membrane
compartments used CLi to represent the clearance of drug
into the membrane and CLo to represent the clearance of
drug out of the membrane and into the apical, basolateral, or
cellular compartments. When explicit membrane compart-
ments were included in the model (all except the 3-
compartment model), CLo was equated to CLi/Kp where
Kp is the partition constant for the drug partitioning into
microsomal membranes. For microsomes, it is assumed that
0.7 mL of lipid is available in a 1 mg microsomal protein/mL
incubation (9). Various amounts of cellular lipid were included
in the models (5–40%). When physiological volumes of plas-
ma membrane lipid were used in a compartment (6Phys,
7Phys, and 9Phys), it was assumed that the plasmamembranes
contained 0.1% of cell volume. All other lipid volumes were
divided evenly between the remaining lipid compartments in
a model. For the 3C and 4C models where the plasma
membrane has no explicit volume, CLd was replaced with
CLi/2 (20). This allows explicit membrane and non-explicit
membrane components to be used in the same model.

Since it has been reported that in MDCK cells, the apical
surface area is a fraction of the basolateral surface area (21), an
apical surface area to basolateral surface area ratio (asa) was
also varied in some of the calculations. For these calculations,
asa was varied between 0.13 and 1. Since clearance is a
permeability-surface area product, all clearances into or out
of the apical membrane were multiplied by asa to simulate
lower clearances with decreasing asa.

General steps for model development included:

1) Derive ordinary differential equations for the appropriate
model (see Fig. 1 and S1). Parameters that were varied
include lipid compartment volumes, asa, and addition of a
basolateral uptake transporter.

2) Set efflux clearance (CLae)=0. Solve the differential
equations for CLi in the A→B and B→A directions using

Compartmental Models for P-gp Efflux 349



receiver concentrations from either MDCK cells or
MDCK-MDR1 cells + inhibitor.

3) Using the average CLi from step 2, solve the differential
equations for CLae using the receiver concentrations
from the MDCK-MDR1 cells.

4) Using the optimized clearance parameters from steps 2 and
3, simulate compartmental concentration -time profiles.

5) Calculate lag times by fitting the simulated receiver
concentration-time data to the logistic function (Eq. 1).
Lag times are obtained by extrapolation from the inflec-
tion point to the X-axis.

Models with Single Time Point Data

Differential equations for all models in Fig. 1 were numerically
simulated in Mathematica (Mathematica 8, Wolfram Re-
search). For single point experimental data, initial donor and
final receiver concentrations were used to optimize values for
CLi in the A→B and B→A directions using the FindFit
optimizer in Mathematica. Single point data sets included
either MDCK and MDCK-MDR1 values or MDCK-
MDR1 data in the presence or absence of CsA. The CLi
values were obtained using either control MDCK cells or
MDCK-MDR1 cells+CsA. The average A→B and B→A
CLi values were used as input parameters along with experi-
mental MDCK-MDR1 efflux ratios to solve for efflux clear-
ances. Since the efflux ratios are a ratio of A→B and B→A
receiver concentrations, the system is over-determined and an
error of the fit can be calculated from the predicted and
observed receiver concentrations.

Lag times (tlag) were calculated by fitting simulated receiver
concentration data to a form of the logistic function (22) in
Eq. 1.

Crec tð Þ ¼ a
1

1þ ek tc−tð Þ −
1

1þ ek tc

� �
ð1Þ

In Equation 1, Crec (t) is the receiver concentration as a
function of time t, a is the asymptotic final concentration, k is
the slope at the inflection point and tc is the inflection point.
The slope and inflection point were used to define the straight
line and the lag time was calculated from the intersection of
that line with the x-axis. This resulted in a consistent method
to determine lag time from simulated data.

Models with Multiple Time Point Data

For time course data, the compartmental differential equa-
tions were fit simultaneously to the receiver concentration
data (six time points collected in triplicate) to optimize a value
for CLi. In order to compare single and multiple time point
fits, a CLi value was also fit to the average of the 90-minute
time points. Due to the variability in the experimental data,
attempts to fit the logistics equation to experimental time
course data were not meaningful. Instead, Eq. 1 was fit to
predicted data from the compartmental model and lag time
was calculated as described above.

Miscellaneous Calculations

In order to investigate the possible impact of lysosomal trap-
ping on permeability, pH partitioning equations (e.g. as de-
scribed by Friden (6)) were used to simulate partitioning be-
tween the cytosol and a lysosomal compartment. Passive clear-
ance into the lysosomal compartment was set as CLi/2 (20).
Lysosomal content was set to 10% of the cell volume. The
impact of inclusion of a lysosomal compartment on errors,
intracellular concentrations, and lag time was evaluated.

Error Analysis

Since passive membrane clearances were considered to be
identical for all membranes, increasing model complexity by
adding compartments does not result in additional optimizable
parameters. Therefore, standard statistical methods to compare

Fig. 1 Compartmental models to
predict the impact of transporters
on intracellular concentrations.
Models 3C-7C (models with
mathematical volumes for plasma
membrane), and 6Phys and 7Phys
(models with physiologic volumes
for plasma membrane) are
depicted. Compartments are
labeled as follows: A: apical; B:
basolateral; C,C1,C2: intracellular;
L: intracellular lipid; AM: apical
membrane; BM: basolateral
membrane.
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models such as AIC or BIC cannot be used. Since the
apical efflux clearances were fit to the experimental
efflux ratio, an objective model error could be calculated
from the predicted and observed receiver concentrations
(error = Creceiver, obs/Creceiver, pred).

In order to determine possible sources of model errors, we
investigated the impact of altered receiver concentration on
model error. First, simulated (error-free) receiver concentra-
tions were generated with the 5C model. Next, receiver con-
centrations were varied in the presence and absence of CsA,
for both the A→B and B→A directions. The only systematic
change that resulted in non-random, positive errors was
higher than expected permeability in MDCK-MDR1 (+ ef-
flux) cells in the B→A direction. Therefore, we added a
basolateral uptake transporter to the models and determined
its impact on model error.

RESULTS

Experimental Variability Affects Model-Predicted
Parameters

Table I lists the A→B and B→A receiver concentrations at
90 min, and efflux ratios (ER) for atorvastatin in MDCK-
MDR1 cells with and without CsA. Data from three separate
experiments are listed (atorvastatin1, atorvastatin2, and ator-
vastatin3). All three datasets were generated with standard
protocols and procedures. Qualitatively, all three datasets
suggest that atorvastatin has moderate-to-poor permeability
and is a P-gp substrate. Atorvastatin3 data resulted in the
lowest model error (data not shown), and was used for all
subsequent studies. These results underscored the sensitivity of
the model error to variability in experimental data. The data
for all six compounds are given in Table S1 (Supplementary
Material).

Experimental variability was also evaluated by comparing
experiments with different control cells. There are two possi-
ble controls for our MDCK-MDR1 cells – background
MDCK cells and MDCK-MDR1 cells treated with the P-gp
inhibitor CsA. Thus, datasets in MDCK-MDR1±CsA cells
(Table S1) were compared with datasets from MDCK and
MDCK-MDR1 cells (9). Using the 5-compartment model,
errors were compared for six substrates at different lipid
concentrations. The data for 10% and 40% lipid are given
in Table II. The average fold error for all six drugs at all lipid
concentrations was 2-to 3-fold higher when background
MDCK cells were used as controls (Table II).

Model Complexity and Membrane Compartments

The model errors for the various compartmental models are
shown in Table III. The errors were similar for each model

and these errors alone are not sufficient to identify an optimal
model. When efflux is out of the cytosol, the 3C model might
be sufficient. However, the 5C model is the simplest model
that allows efflux from the membrane. Although we have
evaluated structural parameters (lipid content and fractional
surface areas) for all models, for brevity, only the 5C model
results will be presented. The predicted clearance values, lag
times, and intracellular concentration ratios for the 5C model
for asa=1 and lipid content=10% are listed in Table IV.

In a systematic evaluation of model errors, the only system-
atic change that replicated the observed non-random model
errors was an increase in B→A permeability for the MDCK-
MDR1 cells. This led us to add a basolateral uptake trans-
porter to the 5C model with apical efflux. The effect of
incorporating this uptake transporter on model error is shown
in Fig. 2a. Increasing the basolateral uptake clearance de-
creases the model error to a point. Figure 2b shows the impact
of basolateral uptake clearance on intracellular concentration.

Table I A→B and B→A Receiver Concentrations at 90min and Efflux Ratios
for Atorvastatin in MDCK-MDR1 Cells with or Without CsA. Three Sets of
Experiments are Reported

Drug fum Cell C0 Cr,AB Cr,BA ER
μM

Atorvastatin1 0.52 MDCK-MDR1 5 0.004 0.47 38

MDCK-MDR1 + CsA 5 0.01 0.02 0.4

Atorvastatin2 0.52 MDCK-MDR1 0.5 0.001 0.05 12

MDCK-MDR1+CsA 0.5 0.005 0.01 0.9

Atorvastatin3 0.52 MDCK-MDR1 5 0.01 0.75 17

MDCK-MDR1 + CsA 5 0.07 0.16 0.7

Notations are defined as follows: fum fraction of drug unbound in microsomes;
C0 drug concentration at time zero; Cr,AB concentration in the receiver
compartment upon apical drug exposure; Cr,BA concentration in the receiver
compartment upon basolateral drug exposure; ER efflux ratio

Table II Fold Error with the 5C Model (asa=1) in Experiments with
MDCK-MDR1 + CsA or MDCK Cells. Errors at 10% and 40% Lipid are
Listed

Experiment

Drug MDCK-MDR1
+CsA 10% lipid

MDCK
10% lipid

MDCK-MDR1
+CsA 40% lipid

MDCK
40% lipid

Atorvastatin 1.6 6.5 1.0 4.2

Loperamide 1.2 1.1 3.5 2.1

Labetalol 4.4 10.4 2.9 6.7

Pitavastatin 2.2 14.5 1.4 9.2

Minoxidil 2.4 2.8 2.1 2.5

Verapamil 1.0 1.5 1.5 1.1

Average fold-
error

2.1 6.1 2.1 4.3
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Most of the error can be removed without a substantial
change in predicted intracellular concentrations.

Effect of Varying Lipid Content and Asa on Model
Parameters

The effect of varying lipid content (5–20%) was evaluated for all
models, and results for the 5C model (asa=1) are reported in
Fig. 3 and Table S2. Similar trends were observed for all
models. Model error decreased with increasing lipid content.
Lag times increased with increasing lipid for all drugs, with the
exception of loperamide. Loperamide has very a high partition
constant and high permeability. Therefore themodel converged
to low lag time estimates at high lipid in order to achieve
sufficiently high receiver concentrations. Intracellular concen-
tration ratios in the A→B or B→A direction did not change
markedly with varying lipid, again with the exception of
loperamide. The Ccell,AB ratio of loperamide increased and
Ccell,BA ratio decreasedwith increasing lipid. For all compounds,
10% lipid was used for subsequent model development.

Next, the effect of varying asa (0.13–1) was evaluated for all
models, and results for the 5C model (10% lipid) are reported
in Fig. 4 and Table S3. Similar trends were observed for all
models. Varying asa did not have a marked effect on model
error, lag time estimates, and intracellular concentration ratios.
There was a trend of increasing error with increasing asa for

some drugs (labetalol, pitavastatin, atorvastatin). This trend
was also observed for Ccell,BA ratios for minoxidil and atorva-
statin. Subsequently, asa=1 was used for model development.

Lag Times are Observed Experimentally

Lag times observed in MDCK-MDR1+CsA cells in the A→B
direction for 5 compounds are depicted in Fig. 5. The 5Cmodel
(10% lipid, asa=1) was fit to the lag time data (Fig. 5, blue line).
CLi estimates obtained with the entire concentration – time
dataset (CLi,all) compared well with CLi estimates obtained with

Table III Comparison of Model
Errors Model Atorvastatin Loperamide Labetalol Pitavastatin Minoxidil Verapamil Avg Fold Error

3C 2.0 1.8 4.3 3.2 2 1.0 2.38

4C 1.2 0.8 2.8 1.9 1.8 0.7 1.43

5C 1.6 0.8 4.4 2.2 2.4 1.0 2.14

6C 1.8 0.9 4.6 2.5 2.4 1.0 2.23

6Phys 2.4 1.5 5.4 3.6 2.5 1.1 2.75

7C 2.0 1.0 5.4 2.9 2.7 1.1 2.52

7Phys 2.6 1.3 6 4.1 2.7 1.2 2.98

9C 2.3 1.1 6 3.4 2.8 1.2 2.80

9Phys 2.7 1.3 6.4 4.3 2.8 1.2 3.12

Table IV Estimates of Clearances, Lag Time, and Intracellular Concentra-
tions Obtained with the 5C Model. Parameter Estimates are Reported for
asa=1 and Lipid Content=10%

CLi CLae tlag Ccell,AB Ratio Ccell,BA Ratio
μl/min min

Atorvastatin 2.7 0.033 43.1 9.66 1.28

Loperamide 32.1 0.681 16.5 43.84 1.91

Labetalol 1.7 0.105 33.4 20.35 1.43

Pitavastatin 3.5 0.030 45.3 10.21 1.08

Minoxidil 0.3 0.021 20.1 2.53 1.26

Verapamil 15.7 0.147 8.7 6.38 1.92

Fig. 2 Impact of basolateral uptake transport on model error and predicted
intracellular concentration. All datasets in Tables I and S1 were used to build a
5C model with apical efflux as well as basolateral uptake. In the absence of
basolateral uptake experimental data, a theoretical range of CLbu was used to
evaluate the impact of CLbu on (a) model error, and (b) predicted intracellular
concentration.
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Fig. 3 Effect on lipid content on model predictions. Lipid content was varied from 5 to 20% in the 5C model. Model errors, predicted lag times, Ccell,AB ratios
and Ccell,BA ratios with varying lipid content are depicted for six compounds.

Fig. 4 Effect of asa onmodel predictions. Asa was varied from 0.13 to 1 in the 5Cmodel. Model errors, predicted lag times, Ccell,AB ratios and Ccell,BA ratios with
varying asa are depicted for six compounds.
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only the 90-min concentration data point (CLi,90). Therefore, a
time-course experiment may not be necessary in order to obtain
cellular diffusion or active efflux clearance estimates. Lag times
calculated with the logistic curve equation from the tangent at
the inflection point of the curve (Fig. 5, red line) are listed in
Fig. 5 for each drug. Due to experimental variability, it was
necessary to fit Eq. 1 to the model predicted data shown in
Fig. 5. This appears to work well for four of five drugs, but the
calculated lag time appears to be overestimated for loperamide.
It is clear from these data that lag times are observed experi-
mentally for all compounds, and models built upon these
datasets should capture the observed lag times.

Model predicted lag times are shown in Figure S2. It is
noteworthy that the 3C and 4Cmodels -models with no explicit
apical or basolateral membrane compartment - did not predict
a lag time for any drug. Of the remaining models, the 6Phys

model predicted lower lag times compared to the other models.
This is also expected since the 6Phys model differs from the 5-
9C, 7Phys and-9Phys models in that it lacks a substantial barrier
membrane compartment. Due to its low volume, the physio-
logic plasma membrane compartment reaches steady-state very
quickly, resulting in low predicted lag times.

A→B Versus B→A Intracellular Concentration
Differences are Predicted with Explicit Membrane
Compartments

Intracellular concentration ratios (Ccell–efflux/Ccell+efflux) in
the A→B and B→A directions (Ccell,AB and Ccell,BA respec-
tively) are shown in Fig. 6. Predicted Ccell,AB ratios were
similar across models. On the other hand, very low Ccell,BA

ratios were predicted by all models except 3C and 4Cmodels.

Fig. 5 Experimental lag times. Receiver concentrations in direction as a function of time are depicted. Experiments were conducted in MDCK cells at 20 μMdrug
concentration in triplicate, and data points are depicted as closed circles. Data were collected for (a) verapamil, (b) loperamide, (c) labetalol, (d) atorvastatin, and
(e) minoxidil. The 5Cmodel-predicted concentration – time profile is depicted with a blue line. The tangent at the inflection point of the logistic curve to calculate
lag time (tlag) is depicted with a pink line. CLi,all: CLi predicted with the entire time course dataset; CLi,90: CLi predicted with the single point (90 min) data points.
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In other words, all models except the 3C and 4C models
predict much higher decreases in intracellular concentration
in the A→B than in the B→A direction. The 3C and 4C
models predict large decreases in intracellular concentrations
in both directions.

Comparison of Compartmental Models

A total of 9 models were developed (Fig. 1 and Figure S1), as
detailed under Methods. Estimates of clearance and intracel-
lular concentrations, and errors are listed in Table S4. The 3C
and 4Cmodels –models with no explicit apical or basolateral
membrane compartments – resulted in parameter estimates
that were different from all other models for most drugs. Thus,
CLi estimates generally were up to an order of magnitude
lower with the 3C and 4C model versus all other models. The
estimates for CLae with the 3C and 4C models were several
orders of magnitude higher compared to the other models.
This is expected since the amount transported is [CLae *
concentration] and the membrane concentrations are much
higher than aqueous concentrations. With respect to intracel-
lular concentrations, the Ccell,AB ratios were similar across all
models. However, the Ccell,BA ratios were markedly higher
with the 3C and 4C models compared to all other models.
Finally, errors were comparable across all models (Tables III

and S4). The inclusion of a lysosomal compartment (pH
partitioning (6)) was evaluated but did not result in decreased
errors, substantially different lag times, or intracellular con-
centrations (data not shown).

DISCUSSION

The FDA and EMA guidances on transporters are evolving,
and currently do not incorporate specific experimental assays
into clear decision trees. This is expected given the diversity of
available experimental in vitro systems and protocols, and
undeveloped correlations with in vivo effects. Development of
these correlations requires both an understanding of relevant
concentrations and the kinetic parameters of the transporters
of interest. While unbound extracellular concentrations can
be measured, unbound intracellular concentrations cannot.
The free drug hypothesis suggests that extracellular and intra-
cellular unbound concentrations are equal for permeable
compounds. This may not be true for uptake and efflux
transporter substrates. Others and we have shown previously
that compartment models can be used to predict intracellular
concentrations. As discussed below, the present study evalu-
ates the impact of experimental variability, model complexity,
and model identifiability on in vitro analyses.

Fig. 6 Comparison of intracellular
concentration ratios among models.
Ccell,AB ratios and Ccell,BA ratios
predicted from all compartmental
models are depicted for six
compounds.
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Experimental Variability

Experimental variability is a major factor when developing
quantitative relationships for permeability data. The two fac-
tors that we have examined are experimental variability and
inconsistencies between different cell-based models. For ex-
ample the variability in the atorvastatin data in Table I shows
that receiver concentrations can vary more than an order of
magnitude on different days. The efflux ratios are more con-
sistent, presumably since some of the variability cancels when
ratios are calculated. Similar variability in permeability exper-
iments has been reported in the literature. For example, the
reported Papp values for verapamil in MDCK cells varies
between 8 and 33×10−6 cm/s (9,23).

Another factor contributing to variability is the use of
different cell lines in the same experiment. Table II clearly
shows that lower errors are obtained when addition of CsA to
the MDCK-MDR1 cell line is used as a control. Others have
suggested that different cell lines can have significant differ-
ences in permeability and/or transport (24). Differences in cell
phenotype such as membrane composition, transporter ex-
pression, or tightness of cell junctions could contribute to
experimental variability. For this reason, it is preferred to
use inhibited cells (e.g. MDCK-MDR1+ CsA) versus back-
ground cells (e.g. MDCK) as a control for transporter
experiments.

Model Complexity

In contrast to compartmental models, the actual path across a
cell is complicated by membranes and organelles. An impor-
tant component of this complexity that can be modeled is the
partitioning of drugs into intracellular lipids. There are two
ways we can represent intracellular membrane components.
First, a membrane can form a barrier dividing the cellular
compartment (e.g. 7C L in Fig. 1). In this case, the drug
molecule must diffuse in and then out of the membrane
compartment for passage across the cell. A second configura-
tion is a lipid compartment within the cell for which an
intracellular drug molecule can but need not diffuse through
(e.g. 4C L and 6C L). When modeling the plasma membrane,
lipid content can be divided evenly among all membrane
compartments, or the plasma membrane compartments can
be limited to physiological volumes - only 0.1% of the total cell
volume (e.g. 6C or 6Phys respectively). Although we used the
fraction unbound in microsomes to estimate membrane
partitioning, other modeling efforts have incorporated Log
P/Log D to predict Kp (20).

The data presented here suggests that adding model com-
plexity (additional compartments, lysosomal partitioning, geo-
metric changes) does not offer an advantage over the simpler
3C and 5Cmodels. Only P-gp data are discussed here, but we
expect similar results for other transporters. Thus, efflux out of

the cytotosol and uptake from the extracellular fluid may be
adequately modeled with the 3C model.

Error Analysis Suggests Additional Transporters

The model errors (Table III) from the single time-point data
arise from lack of consistency between control and efflux cells.
Additional unaccounted differences (e.g. additional trans-
porters besides apical efflux) may exist in the A→B and
B→A directions. An analysis of the model errors revealed that
observed errors (non-random, positive, and large) could only
be reproduced with higher than expected permeability in
MDCK-MDR1 (+ efflux) cells in the B→A direction. One
possible origin of these errors is the presence of an endogenous
basolateral uptake transporter that is inhibited by CsA. The
presence of endogenous basolateral transporters in MDCK
cells has been postulated previously (13,25). We can include a
basolateral uptake transporter in ourmodels and determine its
impact on the model errors. Figure 2a shows the impact of
basolateral uptake clearance (CLbu) on the errors for the 5C
model. As can be seen in this figure, large errors are dramat-
ically reduced with increasing CLbu. Similar results were
obtained for the 7C model (data not shown). The observed
decrease in errors is by no means proof of the existence of a
basolateral transporter. Any process or property that increases
the B→A permeability of the drugs would similarly decrease
these errors.

As expected, inclusion of an uptake transporter can influ-
ence the intracellular concentration. As can be seen in Fig. 2b,
the predicted intracellular concentrations increase with in-
creasing CLbu. Poorly permeable compounds, e.g. labetalol,
are more likely than highly permeable compounds, e.g. ve-
rapamil, to exhibit these increased concentrations. Compar-
ing Fig 2a and b, it can be seen that most of the error is
removed before large increases in intracellular concentrations
are observed. The results in Fig. 2 should be interpreted
qualitatively. Errors could be due to factors other than
basolateral uptake. Therefore mathematically minimizing er-
rors by with CLbu may not provide a true estimate of uptake.
Experimental uptake data would be necessary to parameterize
CLbu and predict intracellular concentrations.

Impact of Lipid Content

With compartmental models, volumes such as lipid content
need not be physiological, and can instead be mathematical
(‘apparent’). These volumes are used to reproduce observed
concentrations. In the present study, we have evaluated all our
models at lipid contents ranging from 5% to 40% (Table S2).
Data are shown for 5–20% lipid (Fig. 3), because higher
partitioning drugs such as loperamide cannot be correctly
modeled at higher lipid content. Also, the physiological lipid
content of cells is likely to be 5–10% of cell volume (26–28).
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Impact of Surface Area Ratios

In addition to membrane configuration and content, another
consideration of the cell models is the relative surface area of
the apical and basolateral membranes. It has been reported
that the apical surface area of MDCK cells is 13% of the
basolateral surface area (asa=0.13 (21)). We therefore evalu-
ated all models (at 10% lipid) at asa values ranging from 0.13
to 1.0 (Table S3). As seen in Fig. 4, there is very little change in
errors, lag time, and concentration ratios with changes in asa.

Model Identifiability

It is clear from the above discussions that the errors cannot
definitively identify the best model. This not surprising since
the mathematical equations of the models can be collapsed to
identical forms (see Part 2). However, there are two observations
for which some models diverge. First, a lag time is predicted for
some but not all models. Second, although experimental receiv-
er concentrations can be reproduced for all models, intracellular
concentrations can vary dramatically as discussed below.

Lag Time

Although there is variability in observed lag times between
and within experiments (Fig. 5), all compounds studied do

show a lag time. These lag times are presumably due to both
diffusional barriers and the need to equilibrate with intracel-
lular membranes. As seen in Figure S2, the 3C and 4Cmodels
do not predict lag times. This is because these models have no
membrane barriers. A molecule that crosses the first plasma
membrane (with no explicit volume) is immediately available
at the second plasma membrane. A lag time is predicted for
the 6Phys model but the minimal volume of the membrane
barrier allows rapid equilibration, and therefore, the lag times
are minimal. On the other hand, all models with considerable
membrane barrier volumes predict longer lag times.

It stands to reason that both poor permeability and high
partitioning will increase lag times. Therefore it could be
expected that physicochemical properties of drugs will be
determinants of lag times. It is also possible that the complex-
ities of cellular membranes contribute to delayed passage
across cells. For example, the inner and outer leaflets of the
plasma membrane have different compositions (29). Our cur-
rent datasets are too sparse and too variable to model these
complex relationships.

Intracellular Concentrations

As stated earlier, predicting relevant concentrations of trans-
porter substrates is critical for accurate in vitro - in vivo extrap-
olation. The impact of transporter activity on unbound

Table V Brain and Liver Concen-
tration Ratios in mdr1(−/−)/
mdr1(+/+) Mice, Compared with
Ratios Predicted From the 5C
Model

n.d. not determined

Drug Brain Conc. Ratio
mdr1(−/−)/
mdr1(+/+)

Predicted
Ccell,AB ratio

Liver Conc. Ratio
mdr1(−/−)/
mdr1(+/+)

Predicted
Ccell,BA ratio

Reference

Verapamil 9.5 6.4 1.1 1.9 (32)

Verapamil 7.7 6.4 n.d. 1.9 (33)

Loperamide 65 43 n.d. 1.9 (34)

Loperamide 31 43 n.d. 1.9 (33)

Loperamide 13.5 43 3.1 1.9 (35)

Pitavastatin 1.3 10 0.88 1.1 (36)

Digoxin 35.3 31 2.0 1.5 (37)

Morphine 1.7 n.d. 1.1 n.d. (37)

Dexamethasone 2.5 n.d. 1.1 n.d. (37)

CsA 17 n.d. 1.2 n.d. (37)

Ondansetron 4.0 n.d. 0.9 n.d. (35)

Vinblastine 22.4 n.d. 1.8 n.d. (38)

Asimadoline 9.1 n.d. 1.1 n.d. (39)

Nelfinavir 16.1 n.d. 3.0 n.d. (40)

Selamectin 4.9 n.d. 0.5 n.d. (41)

Ivermectin 59 n.d. 3.7 n.d. (41)

Grepafloxacin 2.35 n.d. 0.88 n.d. (42)

Tacrolimus 6.0 n.d. 1.7 n.d. (43)

Apafant 73.6 n.d. 4.5 n.d. (44)

SDZ PSC 833 2.1 n.d. 0.9 n.d. (45)
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intracellular concentrations can be evaluated with compart-
ment models (6,11,30). For the models discussed here, models
with explicit membranes predicted quantitative differences
between the A→ B and B→A directions. As can be seen in
Fig. 6, the 3C and 4C models show substantial decreases in
intracellular concentrations in the presence of active efflux for
both A→ B and B→A directions. For all other models, active
efflux results in minimal decreases in intracellular concentra-
tions in the B→A direction. This is because the apical efflux is
modeled out of the cell in the 3C and 4C models and out of
the apical membrane in all other models. As discussed previ-
ously, decreasing the apical membrane concentration upon
basolateral addition will result in at most a two-fold decrease
in intracellular concentration (9).

The difference in apical and basolateral exposure becomes
important when considering the impact of efflux transporters
on tissue concentrations. A review of the numerous examples
in the literature underlines the impact of P-gp expression on
brain and liver exposure in mdr1 knockout mice (Table V).
The brain concentrations ratios (knockout to wild type)
ranged from 1.3 to 73.6, with an average ratio of 19.2. In
contrast, the liver exposure ratios ranged from 0.5 to 4.5 with
an average of 1.7. While this is consistent with efflux out of the
apical membrane, differences in transporter expression could
also explain this data. An interesting exception is pitavastatin
for which the predicted A→ B intracellular concentration
ratio is 10 whereas the experimental brain ratio is 1.3. These
results are not surprising, since pitavastatin has been shown to
be subject to both uptake and efflux transport in the rodent
brain (31). This underscores the point that all transport activ-
ity must be accounted for, in order to have confidence in
predicting intracellular concentrations (see Fig. 2b).

CONCLUSION

The major goal of this research effort is to provide models that
can use in vitro data to predict in vivo intracellular concentrations
in various tissues and in the presence of P-gp. Therefore, we
have explored several models, with varying characteristics,
including membrane configurations, lipid content, and mem-
brane surface area ratios. When membranes are modeled
explicitly, these characteristics have little effect on errors and
predicted intracellular concentrations. Errors in these models
may be primarily due to the presence of multiple transporters
in the experimental system. Our results suggest that 1) a 3-
compartment model may be sufficient when efflux occurs from
the cell and capturing lag times is unnecessary; 2) a five-
compartment model is sufficient to predict the impact of
transport out of a membrane; 3) this model may be applicable
to different cell types with different apical and basolateral
surface areas and different lipid contents; and 4) these models
can and should be expanded to include additional transporters

as necessary. As our ability to identify and characterize indi-
vidual transporters increases, these models can be expanded to
predict complex cellular distribution.
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